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Abstract - A technique for estimating the thermal dispersion coefficients in a granular medium (packed bed of 

monodisperse glass beads), originally developed for water as a  flowing fluid, has been adapted for an air flow. 

Thermocouples in the downstream neighbourhood of a line heat source measure the temperature response to a 

step power input. The estimation of the different parameters of the model (one-temperature model) is made by 

least squares minimization of the temperature residuals term that is augmented by a regularization term  based on 

the prior approximate knowledge of the thermocouple locations. It is shown, both theoretically and 

experimentally that, contrary to the water case, both dispersion coefficients (longitudinal and transverse) as well 

as the Darcy velocity, can be reached  for air as a working fluid. The same technique has been tested for solid 

grains with internal micro-porosity. The first experimental temperature responses do not obey the previous 

model. The presence of adsorbed water in micro-pores of the grains, whose evaporation is caused by the 

decrease of the relative humidity of air, constitutes an additional negative heat source term. An experimental 

work, where ambient air is replaced by dry nitrogen, allows the preliminary drying of the grains. Correction of 

the strong temperature drifts caused by initial non-equilibrium, yields temperature signals that can  be inverted 

with satisfactory  residuals. 

1. INTRODUCTION 

Thermal dispersion, that is heat transfer in a porous medium through which a fluid is flowing, occurs in 

many natural situations or industrial applications.  In the case of process engineering, modelling of this 

phenomenon is very important for controlling temperature in granular catalyst beds since chemical conversion 

and/or catalyst lifetime strongly depend on temperature. Thermal dispersion in a porous model is a complex 

phenomenon resulting from diffusion in the solid phase and convection and diffusion in the moving fluid. 

Experimental works exist for studying this phenomenon in the porous media and chemical engineering literature 

[12, 4, 5] but to our knowledge inverse experimental methods have not yet been applied. The simplest 

homogeneous model that can be used in such a situation is based on a local mean temperature that is a average 

between the local solid and fluid temperature that are weighted by their respective heat capacities [10]. This 

reduced model requires the definition of a thermal dispersion tensor, whose coefficients can be considered as 

pseudo-conductivities that depend on the local Darcy’s (or filtration) velocity. 

Metzger [6] and Metzger et al. [7, 8] have shown experimentally that this model could be used in the case of 

water flowing through a bed of glass beads. They estimated the dependence of the longitudinal thermal 

dispersion coefficient on the reduced Darcy’s velocity (the Peclet number). In that water/glass beads case they 

could only yield rough estimates of the transverse dispersion coefficient. 

The same approach is implemented here for a gas (air or nitrogen) flowing through two different granular 

beds, without (same glass beads bed) or with (catalyst support) internal porosity. 

Changing from water to an air flow through glass beads produces a large change of the solid to fluid 

conductivity ratio (λs/ λf), see Table 1, that passes from 2 to 40. The same is true for the volumetric heat 

capacities (ρ cp) of both solid and fluid phases whose ratio ((ρ cp)s/(ρ cp)f) passes from 0.5 to 1600. So one 

challenge in the characterization of thermal dispersion in such a solid/fluid medium was to test the validity of the 

one-temperature model through an inverse experimental approach.  
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2. MODEL AND EXPERIMENTAL SETUP 

 
Model 

The one-temperature model, for a fluid (f) flowing through a granular solid medium (s) is a reduced model 

where the two phase medium is replaced by a homogeneous medium.  

 

It is given by the following convection-diffusion equation: 
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where s  is a volumetric heat source (heat power per unit volume) that dissipates heat in the homogenized 

granular medium and the total volumetric heat ( )p tcρ of the medium is given by a mixing law based of the 

volumetric heat of both phases : 
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and where ε is the granular medium porosity, that is the fluid volumetric fraction. In equation (1) λλλλ is the thermal 

dispersion tensor and uD Darcy’s velocity (also called filtration or superficial velocity). The average enthalpic 

temperature T  in a point P of the medium is a local weighted average of temperature in a sphere of volume V, 

centred in P, of radius R , that is large with respect to the characteristic size of the granular medium (the grain 

diameter), but small with respect to the representative system length (the width of the bed here): 
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If the granular medium can be considered as structural isotropic and if the fluid flows in the x direction with 

a uniform filtration velocity, eqn. (1) becomes: 
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where the triangular brackets around temperature T have been omitted. Let us note here that the three dispersion 

coefficients, λx, λy et λz, depend on the structure of the porous medium, on the nature of the fluid and of the 

filtration velocity uD. 

 

Solution of the direct problem 

We consider here a fixed granular bed shown in Figure 1 and through which a fluid downwards flows with 

uniform filtration velocity u = uD. We assume initial thermal equilibrium  ( 0T T= ). An electric heating wire is 

set in the z direction normal to the x - y plane of the figure and at the origin (x = y = 0) of the coordinate system. 

It dissipates heat with a power step of lineic power intensity Q (W.m-1) at time t = 0. One considers here the 

medium as infinite, which means that the temperature response to this excitation is 0T T T∆ = −  and is equal to 

zero at large distances from the source. It can be calculated using the two-dimensional Green’s function [2]:  
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This integral can be calculated through a numerical quadrature. 
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Experimental setup 

A fixed bed, see Figure 1, is constituted of monodisperse  glass beads of diameter  d = 2 mm, and porosity ε 
= 0.365. Either water or air can flow downwards through it. Table 1 gives the thermal properties of both phases. 

The initial bench [8] (water flow) has been modified for a gas flow. A fan is located in a cylindrical duct 

downstream the setup and aspires air from a high volume room upstream the lab through a second upstream 

cylindrical duct. The large volume of the upstream room allows a quasi-constant temperature from the air input. 

The heating wire is perpendicular to the air flow. Thirteen thermocouples, of type E and of 127 µm 

diameter, set parallel to the wire and located mainly downstream the heating wire, measure the temperature 

response of the medium to the  power step. Thermocouples 12 and 13 allow to check the zero temperature 

variation upstream while thermocouples 8 and 11 allow to verify that the heated zone does not reach the wall and 

that the assumption of an infinite medium is valid. The air velocity is measured by a hot wire anemometer in the 

downstream cylindrical duct.  

 

Equivalent bed properties  

Water Air Glass 
Water/glass beads air/glass beads 

ρcp (KJ/m3) 4170 1.2 2080 2840 1320 

λ (W/m/K) 0,607 0,026 1 0.831 0.2 

 

 

 

 

The heating level Q is chosen in order not to modify the thermophysical properties of both fluid and solid 

(maximum temperature rise of the order of one Celsius degree). Measurements have been made for Peclet 

numbers (Pe = (ρ cp)f  u d /λf) from 10 to 70 in the case of air flow, which corresponds to maximum filtration 

velocities close to 0.7 m/s. For water flow the Peclet number varied between 10 and 130, with maximum 

filtration velocities of the order of 7 mm/s.  

 

 

 

 

3. PARAMETER ESTIMATION TECHNIQUE 

 
Parameter estimation  

The most classical parameter estimation technique relies on the minimization of the ordinary least square 

sum : 

 

Figure 1. Dimensions of the granular media and positions of thermocouples. 

. 

Table 1. Thermal properties of the two phases of the granular medium. 
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where exp, ikT  is the temperature measured at the location (xi, yi) of the i
th thermocouple and tk, the k

th time of 

measurement and ( , , , )i i kT x y t ββββ the corresponding theoretical temperature given by solution (5) of the direct 

problem, which depends of the different parameters to be estimated. If the exact locations of the thermocouples 

are known, it is possible to estimate the two dispersion coefficients as well as the filtration velocity, that is vector 

ββββ = [λx, λy, u]
t. In practice that is not the case and it is necessary to estimate not only λx, λy and  u but also the 

unknown locations (xi, yi). This comes from the fact that, in order to have the less intrusive character and the 

highest possible response times, the thermocouple wires are very thin (127 µm diameter) and are first tightened 

in the empty bed. The posterior construction of the bed by filling the 2mm glass beads into the box of the setup 

(see Figure 1) causes a displacement of the hot junctions of the thermocouples (in the z = 0 plane), which means 

that their exact locations (xi, yi) differ from their nominal locations (xi
nom, yi

nom).  

In order to estimate the new parameter vector αααα5 = [λx, λy, u, (xi, yi)i = 1, Ntc]
t, with Ntc  the number of 

thermocouples used, the prior knowledge of these nominal location is incorporated in the new objective function: 
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σ σ σ
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where σpos is the standard deviation of the location in  x and y of the thermocouple hot junctions in the bed and 

σT  the standard deviation of the temperature measurement. 

The experimental temperature standard deviation can be measured in a steady state situation (σT = 0.02°C), 

that is without any excitation Q, and it can be assumed that the standard deviation of the location of a hot 

junction, that is a measure of its displacement, is of the order of one bead radius (σpos = 1 mm).  

This type of estimator has been studied previously in the simpler two parameter case (slope and intercept) of 

the straight line model with stochastic errors on both  dependent (ordinate) and independent (abscissa) variables 

[6]. It is called a measurement error model in the statistical literature [3, 11] and qualified as a functional model 

in the case where the model is exact and where the exact values of the independent variable(s), also called 

incidental variables, xi and yi in our case – are deterministic. When the incidental variables are independently 

distributed stochastic variables of common variance, the statistical model is called structural or ultrastructural 

model, depending whether they are identically distributed random variables or not. 

Minimisation of sum (7) with respect to parameter vector αααα5 constitutes a modified version of the Total 

Least Square estimator (which is obtained for σT  = σpos = 1) or to orthogonal regression where both variables, 

here temperatures Ti and locations (xi, yi) are treated symmetrically. 

It is also possible to show that this minimisation, which is made here through the Gauss-Newton  algorithm, 

corresponds to the use of a Gauss-Markov estimator, with a minimum variance for the estimates of the 

coefficients of the parameter vector. 

Metzger et al. have shown [6]-[9] that these estimated values depend quite weakly on the  choice of the 

standard deviation σpos, as soon as it is bigger than  a fraction of a millimetre. A low value σpos (smaller than one 

micrometer) leads to very poor temperature residuals with estimated locations close to their nominal values 

( ˆ ˆ;nom nom

i i i ix x y y≈ ≈ ) ; values of  σpos in-between one micrometer and a few tenth of millimetre lead to a 

decrease of the residuals and a variation of the estimated values. As soon as σpos = 1 mm, both residuals and 

estimates become good and do not vary any more. At last, for σpos > 1mm, one nearly meet the case of ordinary 

least squares where temperatures only are fitted and the non linear inversion algorithm does not converge 

anymore. Let us notice that multiplication of sum S’  by σT
2 show that this minimisation can also be considered 

as Tikhonov zeroth order regularization where the regularization coefficient is (σT /σpos)
2. 

 

Monte Carlo simulations 

It is possible to make Monte Carlo simulations of inversion [1]: the true temperature response of model (5) 

is noised with an independent additive normal random noise of zero mean and standard deviation σT , which 

yields the simulated experimental temperatures exp, ikT . The same technique is implemented with both exact 

thermocouple coordinates (xi, yi) that are noised the same way with a noise of standard deviation σpos to produce 

the nominal locations (xi
nom, yi

nom). A Gauss-Newton minimization of S’ yield an estimation 5α̂ααα  of the parameter 

vector. If 400 simulations of this type are made with the corresponding inversions, 400 estimates ( )ˆ n

jα  are 

available for the jth parameter of 5α̂ααα , n being the inversion number.  It is then possible to reach the statistical 
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distribution of each estimated parameter (its histogram) and to calculate the dispersion (standard deviation sj) of 

each estimate as well as its bias bj, that are : 

 

( ) ( )
400 40022

( ) ( )

1 1

1 1
ˆ ˆ ˆ ˆ ˆand - with

400 400

n n

j j j j j j j j

n n

b sα α α α α α
= =

= − = =∑ ∑   (8) 

 

   Such estimates are given in Table 2 for air or water flow through the glass beads. They correspond to the 

locations of thermocouples 2 to 7 in Figure.1 and to a time step of 0.15 s, with a final time of 900 s for air, the 

corresponding values being 0.15 s and 45 s for water. One can use here the ( ) /
j j j

b s α+  ratio (relative error) as 

an index of quality of inversion for parameter αj. The λx estimations have the same quality for air and water with 

“relative errors” smaller than 3 %: bias is larger for air but it is compensated by a lower dispersion. For λy  

estimations the “relative error” is still acceptable for air (5 %) but too large for water (21 %) to yield precise 

values. For both fluids the filtration velocity is the parameter that is estimated with the maximum precision 

(relative errors lower than 2 %). This confirms the possibility of estimating the transverse dispersion coefficient 

for air, which was not possible for water. 

It is interesting to notice here that the estimation bias on the different parameters, that is caused by the non 

linear character of the estimator here, can be of the same magnitude or even higher than the standard deviation, 

see the /
j j

b s  column in Table 2. 

 

 

 j parameter 

exact 

value 

 

jα  

average 

estimation 

 

jα̂  

estimation 

bias 

 

bj 

estimation 

standard 

deviation 
sj 

bias/dispersion 

 

 

jj sb /  

« relative 

error » 

 

jjj sb α/)( +
 

1 xλ  (W.K-1.m-1) 0.962 0.984 +0.022 0.008 275  % 3 % 

2 yλ  (W.K-1.m-1) 0.256 0.246 -0.010 0.003 336  % 5.2 % air 

3 u (m.s-1) 0.353 0.355 +0.002 0.004 50 % 1.7 % 

1 xλ  (W.K-1.m-1) 60 60.321 +0.321 1.009 32 % 2.2 % 

2 yλ  (W.K-1.m-1) 3 2.681 -0.329 0.310 106 % 21 % water 

3 u (mm.s-1) 6.288 6.306 +0.018 0.033 55 % 0.8 % 

 

 

4. EXPERIMENTAL RESULTS AND RESIDUALS FOR GLASS BEADS  

The experimental and recalculated thermograms (thermocouples 2 to 7) as well as the temperature residuals 

are shown in Figure 2a for water flow and in Figure 2b for air flow through the 2mm glass beads. The Peclet 

numbers are close for the two cases ( 30Pe ≅ ). The temperature residuals ( )exp,
ˆ(  )

ik ik
T T− αααα  are plotted as 

functions of time for each thermocouple. Their quadratic mean is lower than 30 mK and identical for the two 

fluids. The low level and the non correlated shape of the residuals show that the one-temperature model fits very 

well the experimental curve for both flows. It is interesting to notice that the measurement duration is about 10.  

 

 

Table 2. Monte Carlo simulations of inversion for air or water flow through a bed of glass beads. 
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mes larger for air than for water.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2b. Transient temperature response and residuals for the case of air Pe ≈ 30. 

 

Figure 2a. Transient temperature response and residuals for the case of water for Pe ≈ 30. 

   

 

Figure 3. Estimated thermocouple positions , air flow through glass beads. 
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The experimental location residuals are presented for air flow in Figure 3 for Peclet number ranging from 10 to 

70 : the nominal location of each thermocouple is located at the center of each (x, y) coordinate system while the 

corresponding estimated location , for a given Peclet number, is set in the same figure. The size of a bead is 

represented by a circle in each figure. It is interesting to notice that the estimated locations are distributed 

uniformly, in terms of angular position and polar radius, around the nominal location point, which seems to show 

that there is no large experimental bias in the location estimation procedure. The corresponding values of the 

estimations of xλ  and yλ are shown in Figures 4 and 5. The estimates have not been subjected to a bias 

correction here. One can notice that the dispersion of the estimations of  xλ  agree with the theoretical Monte 

Carlo simulations shown in Table 2. That is not the case for the estimations of yλ  that are more dispersed at low 

velocities where some velocity fluctuations during the experiment are suspected (a fan with a non optimal 

efficiency was used). 

5. EXPERIMENTAL RESULTS FOR SOLID GRAINS WITH INTERNAL POROSITY 

Experiments with a bed of glass beads, through which air flows, have allowed both the measurement of the 

dispersion coefficients and the validation of the one-temperature model in this situation for this type of granular 

academic medium. We have tried to use the same inverse technique for a change of solid grains : the solid grain 

used (a ceramics, with approximately spherical grains of granulometry between 2 and 4 mm) has an internal 

porosity, which was not the case for the glass beads. The thermal properties of the ceramics grains (conductivity, 

volumetric heat) differ from those of the glass beads and the porosity of the ceramics grain/air medium differ 

from the porosity of the glass beads/air system. 

The temperature responses of the new medium that has been  filled in the setup box are shown in Figure 6. 

They are very different from the glass/air thermograms and our model, eqn.(5) does not fit the experimental 

curves. 

Presence of liquid adsorbed in the micro-pores of the grains, that are hygroscopic in the presence of humid 

air, is suspected for this deviation: this water can evaporate because of the decrease in relative humidity of air 

that has been heated by the heating wire. This could cause a negative non linear heat source in the heat equation. 

This source depends of course of the saturation curve of the grain and can not be integrated in our model. It was 

therefore necessary to make the experiments with both dry grains and dry gas. Air flow was replaced by dry 

nitrogen that expanded out of N2 cylinders through a gas regulator into the setup. Nitrogen flowed during more 

than one hour through the bed, in order to dry it, before heating started.  

 

 

Figure 4. The result of estimation of 

longitudinal thermal dispersion coefficient. 

 

Figure 5. The result of estimation of 

transversal thermal dispersion coefficient. 
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Thermograms are shown for this type of ceramics grain/nitrogen flow in Figure 7, for a filtration velocity of 

0.5 m/s. Heating starts here at  time ts = 5000 s. The medium is not at initial uniform temperature and the inlet 

gas temperature varies with time. This is why a strong temperature drift with time can be noticed. A temperature 

correction of the thermograms, ( )iT t , is necessary . It uses a control thermocouple  set in the free gas flow 

upstream the set up and yield an experimental reference thermogram ( )réfT t . A moving average is made with 

three points of the reference thermogram and this temperature is subtracted from each thermogram: 

1

1

1
'( ) ( ) ( ) with ( ) ( ∆ )

3
i k i k ref k ref k ref k

m

T t T t T t T t T t m t
= −

= − = +∑   (9) 

where the time step is 0.15t∆ = s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This correction is not sufficient because a drift remains before the excitation. A second correction of slope and 

intercept is calculated for the 30 seconds before excitation: 

 

  
Figure 6. Temperature response signal 

for air / porous grains. 

Figure. 7. Temperature response signal 

for nitrogen / porous grains. 

 

  
Figure 8. Temperature response signal for 

nitrogen/porous grain after corrections. 

Figure 9. Residuals for nitrogen/porous 

grains. 
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where 
( )

( ) ( )'

2

1

〈

〈

= −
−

∑
∑ k

k

i k start i k

t tk start

t t

a t t T t
t t

 (correction of the drift of each individual temperature by a one-

parameter linear regression). 

Figure 8 shows the "iT  thermogram after these two corrections, with a new time origin t = 0 set at former time ts. 

Starting from these thermograms, it is possible to invert the responses of thermocouples 2 to 6. Residuals are 

shown in Figure 9. They are higher and more correlated than in the glass beads/air case but since heating has 

been higher than in the preceding case (3 K instead of 1 K), the residual over signal ratio remains the same. The 

filtration velocity that can be deduced from the free stream velocity measurement by the hot wire anemometer is 

0.50 m/s while the estimated velocity is 0.52 m/s: this agreement is excellent in spite of the correction made. The 

parameter estimation is still possible.  

 

6. CONCLUSIONS 

The quality of the temperature residuals that have been presented show that the one-temperature model can 

be used for modelling heat transfer in a bed of glass beads through which either water or air flows, in spite of the 

very different thermophysical properties of both phases in the latter case: conductivity ratio, solid over gas (air) 

of 40 and a corresponding volumetric heat ratio of 1600. The use of a modified least squares sum (total or 

orthogonal least squares estimation, after normalization of the temperature and location residuals), that takes into 

account the uncertainty on the exact locations of the thermocouple hot junctions, made these results possible. A 

point that deserves to be underlined here is the precision with which the filtration or Darcy’s velocity has been 

estimated. This shows that velocities can be measured indirectly by temperature measurements in the “thermal 

wake” of a heat source in inverse problems based on a convection-diffusion equation. This model has also been 

extended to cases where the granular phase is also characterized by an internal micro-porosity, thanks to a 

mastering of the effects of humidity  adsorption. 

 

 
NOMENCLATURE 
bj  bias 

cp   heat capacity, J.K-1.kg-1 

d   particle diameter, m 

Pe   Peclet number, uD d / af 

Q   linear heating power, W.m-1 

s   volumetric heat source, W.m-3 

sj  standard deviation 

T   temperature, K 

t   time, s 

uD , u  Darcy’s velocity, m.s-1 

x, y, z  space coordinates, m 

Greek symbols 

αααα    parameter vector 

αj parameter 

ε   porosity 

λ   thermal conductivity, W.m-1.K-1 

λx, λy  thermal dispersion coefficients, W.m-1.K-1 

ρ   density, kg.m-3 

Subscripts  

f  fluid phase 

s   solid phase 

Superscripts 

^  estimated value 

_  average value 
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